Dylan Walsh
Postdoctoral Fellow, Massachusetts Institute of Technology
Abstract: Amongst the greatest challenges faced by modern society are the transition to sustainable technologies and the always-pressing need to develop healthcare solutions. Many of the proposed innovations to address these challenges require the ability to design materials with unprecedented structural and compositional control. Automation is emerging as a solution to provide controlled synthesis, processing, and assembly of polymer materials; combined with data science, these two tools are well-poised to accelerate the discovery and development of advanced materials. This talk will first discuss engineering strategies towards controlling polymer molecular weight, composition, and topology with a digital level of precision. Precision synthesis is achieved with an automated flow reactor and is demonstrated by the complete control over polymer molecular weight distribution shape, as well as the synthesis of shape-defined bottlebrush polymers. This work pushes the limits of molecular design and assembly, with applications as a nanostructured material for electronics, structural color, filtration, water purification, and energy storage. The second half of the talk will focus on the development of high throughput automation for polymer synthesis and the role of data science for polymer material discovery.
Bio: Dr. Dylan Walsh is an accomplished postdoctoral researcher in the Department of Chemical Engineering at MIT. He works in the labs of Profs. Klavs Jensen and Brad Olsen, where he is currently focused on developing intelligent automated reactors for polymer synthesis. In addition, he is leading the development of CRIPT (Community Resource for Innovation in Polymer Technology), an open-source digital polymer ecosystem that serves as a community driven polymer database with cutting-edge cheminformatic tools. Prior to joining MIT, Dr. Walsh earned his Ph.D. in chemical engineering from the University of Illinois – Urbana Champaign, under the supervision of Prof. Damien Guironnet. He was a DuPont Science and Engineering Fellow and a Dow Chemical Company Graduate Fellow during his graduate studies, where he developed engineering methods for precision synthesis and assembly of polymer materials. He also holds two degrees in chemical engineering and chemistry from the University of Minnesota – Twin Cities, where his undergraduate research focused on the development of novel catalytic organometallic reactions.
Microsoft Teams meeting
Join on your computer, mobile app or room device
Click here to join the meeting
Meeting ID: 250 664 279 030
Passcode: 69WND4
Download Teams | Join on the web
Or call in (audio only)
+1 647-794-1609,,661979446# Canada, Toronto
Phone Conference ID: 661 979 446#